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Exact solutions of nonstationary problems of heat conduction have been obtained for an unbounded rectangu-
lar region when the opening angle is equal to π/(2n + 1), where n is any natural number. By passage to the
limit it has been shown that no stationary regime is possible for the rectangular region in the case of action
of a constant internal source. The exact solution of the stationary problem for an angular region with an ar-
bitrary opening angle κ0 has been given. It has been proved that in the presence of a constant heat source
the stationary regime is possible just for the acute angle κ0 ≤ π ⁄ 2, while for the right or obtuse angles
κ0 ≥ π ⁄ 2 the stationary regime is impossible, since the temperature increases without bound at internal points.

Problems of heat conduction with internal sources arise, for example, in heating of bodies by superhigh-fre-
quency currents [1], in physical nuclear processes [2], and others. Similar nonstationary problems in the classical for-
mulation for geometrically one-dimensional bodies have been considered in [3, 4]. It is very difficult to obtain exact
analytical solutions in the case of specific engineering parts having a complex geometry [5]. One is able to do this
only in the case of a classical geometry of a body. Solutions obtained for an unbounded angular region enable one to
describe to an extent the processes of heat conduction in bodies whose shape has angles.

Nonstationary Problems for an Unbounded Rectangular Region. Let it be necessary to find the solution of
the heat-conduction equation with an initial condition at t = 0 and a boundary condition at the boundary Γ of a rec-
tangular region Ω:

ut = a
2∆u + q (t, x, y) ,   u t=0 = f (x, y) ,   u Γ = 0 ,   x ≥ 0 ,   y ≥ 0 . (1)

In the case we can employ the theorem on the product of orthogonal solutions [6] and can take the Green function in
the form
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The solution of problem (1) where a heat source q(t, x, y) is acting inside Ω is given by the integral formula
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∗
 . (3)

If the initial condition and the internal source are constant

f (x, y) = T0 ,   q (τ, x, y) = q0 , (4)

the solution (3) is substantially simplified. For this purpose we must introduce new integration variables α1 and α2:
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Then, using the transformations described in [4], we can express the integral over the variable x∗  from (3) in terms of
the error integral Φ(z):
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Analogously we transform the integral over the variable y∗  in (3), and the solution of problem (1) takes the
form
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Of interest is the limit for u at t → ∞, upon whose computation we can answer the question of whether there
exists the stationary regime when a constant heat source q0 is acting inside. The latter heats the body, and the opposite
process of extraction of heat occurs at its boundary since a constant zero temperature is maintained at Γ all the time.

When t → ∞, we have z → 0 and the first term in (7) tends to zero; therefore, we drop it at once. Then we
have
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The error integral Φ(z) is a monotonically increasing function; therefore, for the point of the right angle where
x ≤ y we have the inequality
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To evaluate the improper integral in (8) we introduce the renotation of the integration variable
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Using (9) and (10), we evaluate the limit (8) by the inequality
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where by b we will mean a certain positive quantity less than 1, i.e., 0 < b < 1. For Φ(β) we write the convergent Tay-
lor series
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The alternating series (12) for 0 ≤ β ≤ b < 1 consists of monotonically decreasing terms; therefore, we have the
following evaluation:
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Substituting (13) into (11), we obtain the inequality

  lim
t→∞

  u > 
4

π
 
q0x

2

2a
2

 ∫ 
0

b
β2

 − 2β4 ⁄ 3 + β6 ⁄ 9

β3  dβ . (14)

The integral in (14) diverges; this means that the integral of (8) also diverges. In just the same manner we can prove
that the improper integral (8) will diverge for the points y < x. It follows that with increase in t because of the action
of the constant heat source q0 the temperature increases without bound despite the extraction of heat through the
boundary inside the rectangular region; therefore, the steady-state thermal regime is impossible.

Nonstationary Problem for an Acute-Angled Region. We locate the origin of coordinates at the vertex of
an angle and introduce two auxiliary variables ξ1 and ξ2:

ξi = xnix + yniy ,   i = 1, 2 , (15)

where ni = (nix, niy) is the vector of the unit normal to the ith side of the angle (the vector is directed into the angular
region Ω). The equations of the sides of the angle will be determined by the equalities

ξ1 = 0 ,   ξ2 = 0 . (16)

The angle of opening κ0 of the region Ω is expressed in terms of the scalar product of the vectors n1 and
n2:

κ0 = π − arccos (n1n2) . (17)

We consider the auxiliary problem resulting from (1) in the absence of a heat source, i.e., at q = 0, if we
formulate it for the half-space x ≥ 0 and assume that u depends on t and only one geometric coordinate x:

ut = a
2
uxx ,   u t=0 = f (x) ,   u x=0 = 0 . (18)

The solution of problem (18) is known [4] and it has the form
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Using ξ1 and ξ2, we additionally introduce the variables ηij:

ηij = αiξ1 + αjξ2 ,   i ≠ j ,   (i, j) = 1, 2, ...  . (20)

If 8αj ≥ 0, for ξi ≥ 0, where ξi 2 Ω, we obtain 8ηij ≥ 0, i.e., the variables ηij ≥ 0 are nonnegative inside Ω.
Next, we formally replace the variable x in F(t, x) from (19) ηij. The requirement that F(t, ηij) satisfy the heat-con-
duction equation (1) at q = 0 is equivalent to the requirement that the vector (αin1 + α2n2) be unit, i.e.,

αi
2
 + αj

2
 + 2αiαj (n1n2) = 1 . (21)

If αi is plotted on the x axis and αj is plotted on the y axis, expression (21), in the coordinate system
(αi, αj), determines the ellipse whose Mij points enable one to construct particular solutions F(t, ηij) of the one-dimen-
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sional heat-conduction equation. We take α1 = 1 and α0 = 0 as the initial point M10, i.e., M10(1, 0). The next point
M12 on the ellipse (21) will be found by moving from point M10 in parallel to the y axis; then we must move from
point M12 in parallel to the x axis and so on, alternating motions in parallel to the x and y axes. In these motions,
each time we will find new points Mij on the ellipse (21). The coordinates of Mij are determined by the coefficients
αi the algorithm of whose finding leads to the following recurrence formula:

αi+1 = − αi−1 − 2Bαi ,   B = n1n2 = − cos κ0 . (22)

Let the procedure of obtaining points Mij on the ellipse (21) be finite and the last point have coordinates (0,
1). This condition can be fulfilled only in the case where the angle of opening κ0 of the angular region is equal to

κ0 = π ⁄ (2n − 1) ,   n = 1, 2, ...  . (23)

Thus, the number n is determined by the opening angle κ0 from formula (23). If condition (23) is not ful-
filled, the procedure of obtaining points Mij on the ellipse (21) will be infinite and the method proposed below will
be unsuitable.

Let the angle κ0 be computed from formula (23). For such opening angles the solution of problem (1) at q =
0 can be represented by the sum of the functions F(t, ηij):

u = F (t, η10) − F (t, η12) + F (t, η32) − ... − F (t, η2n−1,2n) + F (t, η2n+1,2n) . (24)

Here by F(t, ηij) we must mean the following integral expression:
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To check the fulfillment of the boundary condition u Γ = 0 we should employ the properties of the variables
ηij:

η2n+1,2n = η01 ,   η2n−1,2n = η21   etc., (26)

and the property at the boundary Γ at ξ1 = 0 or at ξ2 = 0:

ηij ξ1=0 = η0j ,   ηij ξ2=0 = ηi0 . (27)

Then at ξ1 = 0 or ξ2 = 0 all the terms but one in the sum of (24) are mutually eliminated, with the result that

u Γ = F (t, 0) = 0 . (28)

The function F(t, x) from (19) possesses the limiting property [4]

    lim
t→0+0

   F (t, x) = f (x) .

Therefore, the sum from (24) will satisfy the following initial condition:

    lim
t→0+0

   u = f (η10) − f (η12) + f (η32) − ... − f (η2n−1,2n) + f (η2n+1,2n) . (29)

It follows from (29) that the solution (24) obtained is particular, since it corresponds to the particular expression of
the initial condition that is determined just by the function f(ηij) dependent on one geometric coordinate. Superposition
of (29), conversely, will depend on two coordinates, i.e., x and y. Of greatest interest is the more particular case where
f(ηij) = 1. Then for each n from (29) we will have
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    lim
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Here F(t, x), similarly to the transformations (5) and (6), can be reduced to the form
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where E in construction is the solution of the boundary-value problem

Et = a
2∆E ,   E Γ = 0 ,       lim

t→0+0
   E = 1 . (33)

Using u from (24) and E from (32), we can construct the following solution of the nonhomogeneous heat-
conduction equation with nonhomogeneous boundary conditions:

U = u (t, x, y) + µ (t) + ∫ 
0

t

E (t − τ, x, y) [q (τ) − µ
.
 (τ)] dτ . (34)

Here U is the solution of the problem for the region Ω with the opening angle κ0 from (23):

Ut = a
2∆U + q (t) ,   U Γ = µ (t) ,

    lim
t→0+0

   u = µ (0) + f (η10) − f (η12) + f (η32) − ... − f (η2n−1,2n) + f (η2n+1,2n) . (35)

The heat source q(t) and the boundary condition µ(t) in (34) and (35) are assumed to be dependent on just
one variable, t.

Stationary Solution for the Angular Region. In this case, the angle of opening κ0 of the region Ω will be
considered to be arbitrary for the present. Let it be necessary to find the solution of the Poisson equation with the
boundary conditions

∆u + q0 = 0 ,   u Γ = 0 . (36)

In the stationary regime, the temperature at the internal points of Ω is determined by two opposite factors:
whereas the heat release q0 contributes to a temperature increase, the extraction of heat through the boundary Γ con-
tributes to a temperature decrease since a zero temperature is maintained all the time at Γ. From an analysis of the
exact stationary solution which will be obtained below, we can draw the following conclusion: if the opening angle is
κ0 ≥ π ⁄ 2, the heat release by the source q0 predominates over the extraction of heat through the boundary Γ and the
temperature at each internal point of the region Ω undoubtedly increases; therefore, the stationary regime is impossible.
The stationary regime is possible just for acute angular regions when κ0 < π ⁄ 2.

Formulation of the boundary-value problems for unbounded regions is usually supplemented with the condi-
tion at infinity [7]. In our case it is obtained from the following considerations. When the distance from the bounda-
ries of the angle is rather large and the influence of the boundaries is weak, the temperature of the points must
increase because of heat release, i.e., the following condition must be fulfilled: if q0 > 0, for (ξ1, ξ2) → ∞ we have

u (ξ1, ξ2) > 0 . (37)
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According to the formulation of problem (36) and (37), the function u interchangeably depends on ξ1 and
ξ2; consequently, these variables must equally be involved in the solution proposed, which will be sought in the form
of a polynomial of the second degree in ξ1 and ξ2:

u = A0ξ1ξ2 + A1 (ξ1
2
 + ξ2

2) + A2 (ξ1 + ξ2) + A3 . (38)

Since grad ξ1 = n1 and grad ξ2 = n2, from (38) we find

grad u = A0 (n1 ξ2 + n2 ξ1) + 2A1 (n1 ξ1 + n2 ξ2) + A2 (n1 + n2) ,

∂u
∂n1

 = n1 grad u = A0 (ξ2 + Bξ1) + 2A1 (ξ1 + Bξ2) + A2 (1 + B) .
(39)

Now we compute from (39) the Laplace operator

∆u = grad (grad u) = 2A0B + 4A1 . (40)

After the substitution of ∆u from (40) into (36) we obtain

2A0B + 4A1 = − q0 , (41)

and from the boundary conditions, for example, at ξ1 = 0, we arrive at the equation

A1ξ2
2
 + A2ξ2 + A3 = 0 , (42)

whence we find

A1 = A2 = A3 = 0 ,   A0 = − q0
 ⁄ (2B) . (43)

Thus, the solution of the Dirichlet problem (36) and (37) for the angular region has the following form:

u = 
q0

2 cos κ0
 ξ1ξ2 . (44)

The solution obtained is suitable only for the acute angle κ0 < π ⁄ 2, since function (44) does not exist at κ0 =
π/2 and condition (37) is violated when κ0 > π ⁄ 2. We have proved above the impossibility of the stationary tempera-
ture field at κ0 = π/2. Therefore, we finally arrive at the conclusion that the stationary thermal regime is impossible
at κ0 ≥ π ⁄ 2 in the presence of a constant heat source in the angular region, and when κ0 < π ⁄ 2 the stationary solution
has the form (44). In this case the lines of the levels u = const are hyperbolas each of which has angle sides ξ1 = 0
and ξ2 = 0 as its asymptotes.

Stationary Problem with Mixed Boundary Conditions. We write the boundary conditions for Eq. (36) as


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αu − λ 
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

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

 Γ

 = b0 . (45)

The solution will be sought in the form (38) as previously. Substituting (38) into boundary condition (45) at
ξ1 = 0 (or at ξ2 = 0), we obtain

α (A1ξ2
2
 + A2ξ2 + A3) − λ [A0ξ2 + 2A1Bξ2 + A2 (1 + B)] = b0 . (46)

Whence we will have three equations:

αA1 = 0 ,   αA2 − λ (A0 + 2BA1) = 0 ,   αA3 − λ (1 + B) A2 = b0 . (47)
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From system (47) in combination with (41) at α ≠ 0 and B ≠ 0 we find Ai:
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Substituting Ai from (48) into (38), we obtain the sought solution:
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If the opening angle is κ0 = π/2, then B = 0 and the solution (49) does not exist. When κ0 > π ⁄ 2, we have
0 < B < 1 and then, for rather large ξ1 and ξ2, we will have u < 0, i.e., condition (37) will be violated. The obtained
solution (49) exists only for the acute angles κ0 < π ⁄ 2; otherwise, the stationary regime with mixed-type boundary con-
ditions is impossible similarly to the previous case of the Dirichlet problem.

The quantity u takes the lowest value at the vertex of the angle:

u ξ1=ξ2=0 = 
b0

α
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2α2  = u00 . (50)

On the side ξ2 = 0, we have

u ξ2=0 = u00 − 
λq0

2αB
 ξ1 , (51)

i.e., with distance from the vertex of the angle along the side ξ2 = 0 the function u increases by the linear law in
relation to the distance to the vertex.

NOTATION

Ω, region of the angle; κ0, its opening angle; Γ, boundary of the angular region; t, time; (x, y), Cartesian co-
ordinates; ∆, Laplace operator; u, temperature of the points of the region Ω; a2, thermal diffusivity; f(x, y), initial tem-
perature; q, heat flux; G, Green function; (x∗ , y∗ ), geometric variables of integration; τ, time variable of integration;
T0, constant initial temperature; q0, constant internal heat source; Φ(z), error integral — Laplace function; n1 and n2,
unit normals to the sides of the angle Ω; ξi and ηij, auxiliary geometric variables; αi and αj, coefficients for construc-
tion of the variables ηij; µ(t), temperature at the boundary; A0−A3, constant coefficients of the stationary solution; α,
heat-transfer coefficient; λ, thermal conductivity; b0, constant in a mixed-type boundary condition.
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